Treatment of Multiple Myeloma in First Relapse

Justin Arnall, PharmD, BCOP
Pharmacist Clinical Coordinator, Hematologic Malignancies
Levine Cancer Institute, Carolinas HealthCare System

Objectives

- Review initial treatment recommendations and considerations for multiple myeloma (MM)
- Compare recent literature on multi-agent treatment regimens for myeloma in first relapse
- Assess toxicity profile and important supportive considerations for novel agents
- Apply novel treatment strategies to patient cases based on literature supported outcomes as well as patient-specific comorbidities

Multiple Myeloma

- Accounts for ~15% of US hematologic malignancies
 - 1.8% of overall cancers
- ~30,330 new cases in US in 2016
 - ~12,650 associated deaths
 - Median age at diagnosis is 69 years old
- Rates of new diagnosis rising each year over past decade at the same rate as annual deaths over the same period
 - Remains an incurable disease

Multiple Myeloma

- Immortalized malignant plasma cells
 - Adhere and accumulate in bone marrow
 - Lead to bone destruction and marrow failure
 - Production of M protein
- Exact etiology not completely defined
 - Overexpression of apoptotic genes (ex. p53)
 - Molecules stimulate clonal growth (ex. IL-6)

Malignant Plasma Cells

- Monoclonal gammopathy of undetermined significance (MGUS)
- Asymptomatic multiple myeloma (smoldering)
- Multiple Myeloma

CRAB features of end-organ damage

0.5 – 1% Many people >50 years old have this

10% per year for the first 5 years

NO CRAB features or end-organ damage

International Myeloma Working Group Diagnostic Criteria for Plasma Cell Dyscrasia

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>M-protein</th>
<th>Bone Marrow Plasma Cells</th>
<th>Myeloma-defining events</th>
<th>Biomarkers of malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGUS</td>
<td><3g/dL</td>
<td><10%</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>Solitary Plasmacytoma of Bone</td>
<td>Not required</td>
<td>No normal PCs</td>
<td>No</td>
<td>Not defined</td>
</tr>
<tr>
<td>Solitary Plasmacytoma of Bone with Minimal Marrow Involvement</td>
<td>Not required</td>
<td><10%</td>
<td>No</td>
<td>Not defined</td>
</tr>
<tr>
<td>Smoldering myeloma</td>
<td>≥3g/dL in serum or >500mg/24h in urine OR >10–60% PCs</td>
<td>≥10%</td>
<td>(or <10% if plasmacytoma+ CRAB or biomarker of malignancy or ≥1 plasmacytoma present)</td>
<td></td>
</tr>
<tr>
<td>Multiple Myeloma</td>
<td>Not required</td>
<td>≥10%</td>
<td>(or <10% if plasmacytoma+ CRAB or biomarker of malignancy or ≥1 plasmacytoma present)</td>
<td></td>
</tr>
</tbody>
</table>

MGUS
- Serum calcium: greater than 1 mg/dL
- Serum creatinine: greater than 1.5 mg/dL
- Serum creatinine: greater than 1 mg/dL
- Serum calcium: greater than 1 mg/dL

Solitary Plasmacytoma of Bone
- Not required
- No normal PCs
- No
- Not defined

Solitary Plasmacytoma of Bone with Minimal Marrow Involvement
- Not required
- <10%
- No
- Note defined

Smoldering myeloma
- ≥3g/dL in serum or >500mg/24h in urine or >10–60% PCs
- ≥10%
- (or <10% if plasmacytoma+ CRAB or biomarker of malignancy or ≥1 plasmacytoma present)

Multiple Myeloma
- Not required
- ≥10%
- (or <10% if plasmacytoma+ CRAB or biomarker of malignancy or ≥1 plasmacytoma present)

CRAB criteria for myeloma-defining events
1. HyperCalcemia: Serum calcium >1 mg/dL higher than the ULN or >11 mg/dL
2. Renal insufficiency: CrCl <40 ml/min or SCr >2 mg/dL
3. Anemia: Hgb <10 g/dL or >2 g/dL below the LLN
4. Bone lesions: ≥1 osteolytic lesion on skeletal radiography, CT, or PET-CT

Frontline Treatment Paradigm
- Goal to achieve a deep response, complete remission, and optimize progression-free survival

Induction:
- RVd (R)-Vinblastine, Doxorubicin, Dexamethasone
- CyBorD (C)-Cyclophosphamide, Vincristine, Dexamethasone

Consolidation:
- Autologous Hematopoietic Stem Cell Transplant
 - (if eligible)
 - OR Doublet/Triplet regimens

Maintenance:
- IMID
- PI

Prognosis
- Survival improved notably in recent years
 - Introduction of immunomodulatory drugs (IMIDs) and proteasome-inhibitors (PIs) initially in relapsed disease
 - With transplant PFS >5 years and OS >10 years is a reality
- 5 year survival rate in 2003 estimated as 34%
- More recent statistics (2016) estimate 49%
- Considered a chronic condition

MM as a Chronic Disease
- Despite improving prognosis remains incurable
 - Majority of patients relapse at which point disease is difficult to manage
- Finding effective treatment at each consecutive relapse is CRITICAL for prolonging overall survival
 - Difficult with increasing drug resistance and decreasing remission duration with each successive regimen

An Evolving Paradigm

Corticosteroids
- Prednisone
- Dexamethasone

PIs
- Bortezomib
- Carfilzomib

IMIDs
- Thalidomide
- Lenalidomide
- Pomalidomide

An Evolving Paradigm

Corticosteroids
- Prednisone
- Dexamethasone

PIs
- Bortezomib
- Carfilzomib

IMIDs
- Thalidomide
- Lenalidomide
- Pomalidomide
An Evolving Paradigm

Corticosteroids
- Dexamethasone
- Prednisone

IMIDs
- Thalidomide
- Lenalidomide
- Pomalidomide

Histone Deacetylase Inhibitor
- Panobinostat

Clinical Trial
- Vnda, PDAC, PBL, LBL

Monoclonal Antibodies
- Daratumumab (CD38)
- Elotuzumab (SLAMF7)

Immunotherapy
- Pembrolizumab
- CAR-T

The New Novel Agents for MM

Options in relapse disease

Ixazomib
- 20S reversible proteasome inhibitor, oral
- Approved after at least 1 prior line of therapy

Pearls
- Adherence – oral regimens increasingly complicated
- Taken on empty stomach, 1 hour before or 2 hours after meals
- Peripheral neuropathy – generally not expected to worsen
- Diarrhea
- Thrombocytopenia
- Back pain

Elotuzumab
- Monoclonal antibody targets CS-1 (or SLAMF7)
- Approved for after at least 1 prior therapy

Pearls:
- Infusion reactions primary concern
- Premedication regimens (30-90 minutes prior): diphenhydramine (25-50mg), ranitidine (50mg), acetaminophen (650-1000mg)
- Split PO and IV dex dosing
- Lymphopenia, leukopenia, thrombocytopenia
- Electrolyte changes

TOURMALINE-MM1
- Lenalidomide-dexamethasone triplet
 - Phase 3 RD ± ixazomib for relapsed and relapsed/refractory MM patients having received 1-3 prior lines of therapy
 -IRD, 28-day cycle: ixazomib 4mg PO days 1, 8, and 15; lenalidomide 25mg days 1-21, dexamethasone 40mg days 1, 8, 15, 22
 - PFS significantly longer with ixazomib (IRD) arm – study reported at 1st pre-specified analysis
 - Serious adverse events similar in both groups
 - Patient reported quality of life similar in both groups

ELOQUENT-2
- Lenalidomide-dexamethasone triplet
 - RD ± elotuzumab for relapsed and relapsed/refractory MM patients having received 1-3 prior lines of therapy
 - ERD, 28-day cycle: elo 10mg/kg weekly cycles 1 & 2 then days 1 & 15; len 25mg daily days 1-21; dex 40mg on weeks without elo and 8mg + 28mg on elo days
 - PFS and ORR significantly improved in ERD group at the interim analysis
 - Fewer complete responses seen in ERD group
 - Similar safety profiles, ERD with increased risk of herpes zoster and risk of infusion reactions
 - Patient reported quality of life similar in both groups

Carfilzomib
- 20S irreversible proteasome inhibitor
- Approved after at least 1 prior line of therapy
- Pearls:
 - Dosing escalation, various dosing schemes (often multiday; 20mg/m² followed by doses 27-70mg/m²)
 - IV, PO dex with each dose (myeloma dosing)
 - Pre- and post-hydration considerations
 - Cardiotoxicity

ENDEAVOR
- Bortezomib combination
 - Phase III study of bortezomib-dex vs carfilzomib-dex for relapsed and relapsed/refractory MM patients having received 1-3 prior lines of therapy
 - KD, 28-day cycle: carfilzomib twice weekly for 3 weeks with 20-56 dosing scheme; dex 20mg twice weekly
 - VD, 21-day cycle: bortezomib 1.3mg/m² days 1, 4, 8, 11; dex 20mg days 1, 2, 4, 5, 8, 9, 11, 12
- PFS significantly improved in KD group at interim analysis
- PFS improvement in subgroups with previous bortezomib
- Higher ORR with KD, no difference at this time in OS

ASPIRE
- Lenalidomide-dexamethasone triplet
 - RD ± carfilzomib for relapsed and relapsed/refractory MM patients having received 1-3 prior lines of therapy
 - KRD, 28-day cycle: carfilzomib twice weekly for 3 weeks (cycles 1-12) and every other week after (cycles 13-18) then stopped with 20-27 dosing scheme; len 25mg daily days 1-21; dex 40mg once weekly
- PFS significantly improved in KRD group at interim analysis
 - Higher ORR with KRD
 - Median OS not reached in either group at interim
 - Similar safety profiles between groups
 - Patient reported higher quality of life similar in KRD group

Daratumumab
- Monoclonal antibody targets CD38
- Indicated in combination with IMiD or PI after at least 1 prior line of therapy
 - Monotherapy after at least 3 prior lines of therapy (original approval)
- Pearls:
 - Disrupts Coombs test, interferes with antibody screening and cross matching – important to screen prior to administration
 - High rate of infusion reactions (specifically 1st dose)
 - Infusion duration, volume, premedications (post-steroid?)
 - Not on package insert; premedicate with montelukast
 - Neutropenia
 - Diarrhea

CASTOR
- Bortezomib combination
 - Phase III study of bortezomib-dex ± daratumumab for relapsed and relapsed/refractory MM patients having received 21 prior line of therapy
 - DVD, 21-day cycles: dara 16mg/kg weekly for 3 weeks in cycles 1-3, once every 3 weeks cycles 4-8, monthly thereafter; bor 1.3mg/m² cycles 1-8, 11 cycles 1-8; dex 20mg days 1, 2, 4, 5, 8, 9, 11, 12
- Median PFS was not reached in DVD group, significantly improved
 - ORR improved in DVD, OS comparison ongoing

POLLUX
- Lenalidomide-dexamethasone triplet
 - RD ± daratumumab for relapsed and relapsed/refractory MM patients having received 21 prior line of therapy
 - DRD, 28-day cycles: dara 16mg/kg weekly for 2 cycles, every other week cycles 3-6, week 1 only thereafter; len 25mg daily days 1-21; dex 40mg weekly
- Median PFS was not reached in DRD group, significantly improved
 - ORR improved in DRD, OS comparison ongoing
 - Daratumumab with a notable side effect profile but manageable with less DRD discontinuation

EQUULEUS

- Pomalidomide triplet combination
 - Phase 1b study, open-label study of daratumumab combined with multiple therapies, results of dara + pomalidomide-dex reported in 103 cases of relapsed/refractory MM ≥1 line of therapy
 - DPd, 28-day cycle: dara 16mg/kg weekly for 3 weeks in cycles 1-2, once every 3 weeks cycles 3-6, monthly thereafter; pom 4mg days 1-21; dex 40mg weekly

- Median PFS 8.8 months, 12-month PFS 42%
 - ORR 60% (42% VGPR, CR, sCR)

Panobinostat

- Histone deacetylase (HDAC) inhibitor
 - Promotes immune function and decreases malignant proliferation
 - Approved in combination with PI and dex after at least 2 prior regimens
 - Pearls:
 - Diarrhea (BBW)
 - Managed with recommended dosing and aggressive antidiarrheals
 - Thrombocytopenia, neutropenia, lymphopenia
 - Fatigue
 - Peripheral neuropathy
 - ECG changes (QTc prolongation; BBW)

Comparing treatment options

Assessing studied combination therapies

LENALIDOMIDE-DEX TRIPLETS

TOURMALINE-MM1 ELOQUENT-2 ASPIRE POLLUX

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>ORR</th>
<th>≥VGPR</th>
<th>Median PFS, mos</th>
<th>PFS HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1 RD RD RD RD</td>
<td>71%</td>
<td>39%</td>
<td>14.7</td>
<td>0.74</td>
</tr>
<tr>
<td>MM1 RD RD RD KD</td>
<td>78.3*</td>
<td>48%</td>
<td>20.6*</td>
<td>0.70</td>
</tr>
<tr>
<td>MM1 RD RD RD KRD</td>
<td>66%</td>
<td>28%</td>
<td>14.9</td>
<td>0.69</td>
</tr>
<tr>
<td>MM1 RD RD RD DRD</td>
<td>79%</td>
<td>33%</td>
<td>17.6</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Median OS, mos:
- NR
- 16.1
- 16.5
- 17.2

Enfamilmary, Pusaarino, Kurniawan, A-1+1, MM1-randomized, RCT, NR=not reported, OR=overall response rate, ≥VGPR=very good partial response, PFS=progression-free survival, VGPR=very good partial response, p=0.05

ENDEAVOR CASTOR

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Overall Response Rate</th>
<th>Median Progression-Free Survival, mos</th>
<th>PFS HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD KD VD DVD</td>
<td>63% 77% 63.2% 82.9%</td>
<td>9.4 18.7 7.2 Not yet reached*</td>
<td>0.53 0.39</td>
</tr>
</tbody>
</table>

DVD=daratumumab-bortezomib-dexamethasone, KD=carfilzomib-dexamethasone, NR=not reported, pt=patient, VD=bortezomib-dexamethasone

*Statistically significant

Len- vs Bor-based Combinations

<table>
<thead>
<tr>
<th>MM1</th>
<th>ELO-2</th>
<th>ASPIRE</th>
<th>POLLUX</th>
<th>ENDEAVOR</th>
<th>CASTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment arm</td>
<td>RD</td>
<td>RD</td>
<td>RD</td>
<td>RD</td>
<td>VD</td>
</tr>
<tr>
<td>ORR</td>
<td>71.5%</td>
<td>66%</td>
<td>66.7%</td>
<td>76.4%</td>
<td>63%</td>
</tr>
<tr>
<td>≥VGPR</td>
<td>39%</td>
<td>28%</td>
<td>40.4%</td>
<td>44.2%</td>
<td>29%</td>
</tr>
<tr>
<td>Med PFS, mos</td>
<td>14.7</td>
<td>14.9</td>
<td>17.6</td>
<td>1-yr 60.1%</td>
<td>9.4</td>
</tr>
<tr>
<td>Med PFS, mos</td>
<td>NR</td>
<td>NR</td>
<td>2-yr 65.1%</td>
<td>1-yr 86.6%</td>
<td>NR</td>
</tr>
</tbody>
</table>

- The lenalidomide-dexamethasone doublet has outperformed the bortezomib-dexamethasone doublet across phase III studies
- No head-to-head comparisons

Prior Treatment Exposure

<table>
<thead>
<tr>
<th>Treatment Regimen</th>
<th>PI naïve</th>
<th>PI exposed</th>
<th>IMID naïve</th>
<th>IMID exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRD</td>
<td>0.75</td>
<td>0.74</td>
<td>0.70</td>
<td>0.74</td>
</tr>
<tr>
<td>KRD</td>
<td>0.73</td>
<td>0.70</td>
<td>0.69</td>
<td>0.80</td>
</tr>
<tr>
<td>KD</td>
<td>0.48</td>
<td>0.56</td>
<td>0.38</td>
<td>0.60</td>
</tr>
<tr>
<td>DVD</td>
<td>0.25</td>
<td>0.46</td>
<td>0.50</td>
<td>0.38</td>
</tr>
<tr>
<td>ERD</td>
<td>0.72</td>
<td>0.68</td>
<td>0.78</td>
<td>0.64</td>
</tr>
<tr>
<td>VD</td>
<td>0.35</td>
<td>0.37</td>
<td>0.36</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Resistance Profile

<table>
<thead>
<tr>
<th>Treatment Regimen</th>
<th>Lenalidomide Refractory</th>
<th>Bortezomib Refractory</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRD</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>KRD</td>
<td>0.64 (IMID Refractory)</td>
<td>0.80</td>
</tr>
<tr>
<td>KD</td>
<td>0.80</td>
<td>0.37</td>
</tr>
<tr>
<td>DVD</td>
<td>0.50 (IMID Refractory)</td>
<td>N/A</td>
</tr>
<tr>
<td>ERD</td>
<td>N/A</td>
<td>NR</td>
</tr>
<tr>
<td>VD</td>
<td>N/A</td>
<td>0.50</td>
</tr>
</tbody>
</table>

High Risk Disease Considerations

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>RD</th>
<th>KRD</th>
<th>RD</th>
<th>KRD</th>
<th>RD</th>
<th>DRD</th>
<th>RD</th>
<th>DRD</th>
<th>VD</th>
<th>KD</th>
<th>VD</th>
<th>KD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (%)</td>
<td>73.5</td>
<td>91.2</td>
<td>56.0</td>
<td>79.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥VGPR (%)</td>
<td>45.3</td>
<td>75.1</td>
<td>27</td>
<td>65.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median PFS, mos</td>
<td>19.5</td>
<td>35.1</td>
<td>13.0</td>
<td>17.3</td>
<td>12.0</td>
<td>10.0</td>
<td>10.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category / Risk</th>
<th>ASPIRE</th>
<th>POLLUX</th>
<th>ENDEAVOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>IRD</td>
<td>0.66</td>
<td>0.70</td>
<td>0.57</td>
</tr>
<tr>
<td>KRD</td>
<td>0.70</td>
<td>0.70</td>
<td>0.58</td>
</tr>
<tr>
<td>≥VGPR (%)</td>
<td>0.65</td>
<td>0.44</td>
<td>0.63</td>
</tr>
<tr>
<td>Median PFS, mos</td>
<td>0.66</td>
<td>0.66</td>
<td>1.00</td>
</tr>
</tbody>
</table>

High risk: del(17p) (in ≥60% of PCs for ASPIRE), t(4;14), t(14;16)

*Statistically significant

Toxicities to individualize therapy selection

<table>
<thead>
<tr>
<th>Treatment Regimen</th>
<th>All AEs</th>
<th>≥Gr 3 or 4 AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRD</td>
<td>82</td>
<td>34</td>
</tr>
<tr>
<td>KRD</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>≥Gr 3 or 4 AEs</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>≤Gr 3 or 4 AEs</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>≥Gr 3 or 4 AEs</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>≥Gr 3 or 4 AEs</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>≤Gr 3 or 4 AEs</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>≥Gr 3 or 4 AEs</td>
<td>32</td>
<td>2</td>
</tr>
</tbody>
</table>

**Statistically significant

Considering Safety Profiles

Toxicities to individualize therapy selection
ELOQUENT-2 Safety

<table>
<thead>
<tr>
<th>AE (%)</th>
<th>All AEs</th>
<th>≥Gr 3 or 4</th>
<th>≥Gr 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>82</td>
<td>34</td>
<td>89</td>
</tr>
<tr>
<td>Anemia</td>
<td>96</td>
<td>19</td>
<td>95</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>84</td>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>95</td>
<td>77</td>
<td>98</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>47</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>Cough</td>
<td>31</td>
<td>-1</td>
<td>16</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>25</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Fatigue</td>
<td>47</td>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>Fever</td>
<td>37</td>
<td>3</td>
<td>25</td>
</tr>
</tbody>
</table>

ASPIRE Safety

<table>
<thead>
<tr>
<th>AE (%)</th>
<th>All AEs</th>
<th>≥Gr 3 or 4</th>
<th>≥Gr 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>17.8</td>
<td>26.5</td>
<td>36.3</td>
</tr>
<tr>
<td>Anemia</td>
<td>42.6</td>
<td>39.8</td>
<td>39.8</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>29.1</td>
<td>31.1</td>
<td>22.6</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>20.4</td>
<td>17.2</td>
<td>17.2</td>
</tr>
<tr>
<td>Cough</td>
<td>22.4</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>16.8</td>
<td>7.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Fever</td>
<td>26.6</td>
<td>1.6</td>
<td>12.8</td>
</tr>
<tr>
<td>Muscle spasm</td>
<td>21.5</td>
<td>3.0</td>
<td>14.1</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>21.4</td>
<td>5.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Hypertension</td>
<td>14.3</td>
<td>4.5</td>
<td>6.9</td>
</tr>
</tbody>
</table>

POLLUX Safety

<table>
<thead>
<tr>
<th>AE (%)</th>
<th>All AEs</th>
<th>≥Gr 3 or 4</th>
<th>≥Gr 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>59.4</td>
<td>51.9</td>
<td>43.1</td>
</tr>
<tr>
<td>Anemia</td>
<td>31.1</td>
<td>12.4</td>
<td>19.6</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>26.9</td>
<td>16.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>13.2</td>
<td>9.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>22.0</td>
<td>5.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Fatigue</td>
<td>24.1</td>
<td>5.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Cough</td>
<td>25.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>25.8</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

CASTOR Safety

<table>
<thead>
<tr>
<th>AE (%)</th>
<th>All AEs</th>
<th>≥Gr 3 or 4</th>
<th>≥Gr 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>17.7</td>
<td>12.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Anemia</td>
<td>26.3</td>
<td>14.4</td>
<td>12.2</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>58.8</td>
<td>45.3</td>
<td>43.9</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>13.2</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>31.7</td>
<td>3.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Cough</td>
<td>23.9</td>
<td>0.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Fever</td>
<td>15.6</td>
<td>1.2</td>
<td>11.4</td>
</tr>
</tbody>
</table>

ENDEAVOR Safety

<table>
<thead>
<tr>
<th>AE (%)</th>
<th>All AEs</th>
<th>≥Gr 3 or 4</th>
<th>≥Gr 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>82</td>
<td>34</td>
<td>89</td>
</tr>
<tr>
<td>Anemia</td>
<td>96</td>
<td>19</td>
<td>95</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>84</td>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>95</td>
<td>77</td>
<td>98</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>47</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>Cough</td>
<td>31</td>
<td>-1</td>
<td>16</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>25</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Fatigue</td>
<td>47</td>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>Fever</td>
<td>37</td>
<td>3</td>
<td>25</td>
</tr>
</tbody>
</table>

POLLUX Safety

<table>
<thead>
<tr>
<th>AE (%)</th>
<th>All AEs</th>
<th>≥Gr 3 or 4</th>
<th>≥Gr 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>17.7</td>
<td>12.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Anemia</td>
<td>26.3</td>
<td>14.4</td>
<td>12.2</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>58.8</td>
<td>45.3</td>
<td>43.9</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>13.2</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>31.7</td>
<td>3.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Cough</td>
<td>23.9</td>
<td>0.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Fever</td>
<td>15.6</td>
<td>1.2</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Selecting therapy

Tailoring therapy based on literature and patient factors
How to Choose?

• Is the patient better suited for a lenalidomide- or non-lenalidomide-based therapy?
• Does the patient have symptomatic progression?
• Does the patient have high risk disease biology?
• Toxicity?

Miscellaneous Factors

• Patient’s preference
• Logistical/socio-economic considerations to choice of regimen
 ▫ i.e. all-oral regimen for patients limited by travel and distance
• Options for later lines of therapy

Candidates for Len-based Therapy

• Disease progression on proteasome inhibitor-based regimen
• Disease progression on bortezomib maintenance therapy
• Disease progression on no treatment after a prior course of therapy of defined duration
• Intolerant to bortezomib
• Lenalidomide-sensitive or naive disease

Len-based therapy selection

• Clinical progression:
 ▫ len-dex-carfilzomib or len-dex-daratumumab
• Bridge to salvage first or second autologous stem cell transplant:
 ▫ len-dex-carfilzomib or len-dex-daratumumab
 ▫ Limited data on feasibility of stem cell collection after dara-RD
• High-risk disease (clinical or biochemical progression):
 ▫ len-dex-carfilzomib or len-dex-daratumumab
 ▫ Biochemical progression, standard risk disease:
 ▫ may consider len-dex-elotuzumab
 ▫ May consider saving carfilzomib and daratumumab for later lines

Candidates for non-Len-based Therapy

• Disease progression on lenalidomide-based regimen
• Clinical disease progression on lenalidomide maintenance therapy
• Intolerance to lenalidomide
Non-Len-based therapy selection

- Bortezomib-dexamethasone no longer an appropriate standard of care
 - Select situations when not a good candidate for alternatives
- Car-dex or bor-dex-dara appropriate for clinical or biochemical progression
 - Consider off-label cyclophosphamide/Pi-based triplet for clinical progression (CyBorD, Car-Cy-dex)
 - Consider off-label pom-based triplets for clinical progression especially in high risk disease (PVD, KPD, Pom-Dara-dex)
- Co-morbidities
 - Pre-existing neuropathy: consider alternative to bortezomib
 - Significant cardiopulmonary disease: consider alternative to carfilzomib
 - Severe COPD/asthma: consider alternative to dara or monitor

Symptomatic Progression

- Myeloma Urgencies/Emergencies
 - Hypercalcemia
 - New or worsening lytic bone lesions
 - Progressive renal dysfunction
- Urgent/emergent, symptomatic relapse requires therapy that has a high likelihood of producing a deep response
 - First consideration: KRD and DRD (≥VGPR in 70-75%)
 - Second consideration: DVD and KD (≥VGPR in 55-60%)
 - Third consideration: IRD and ERD (≥VGPR in 35-50%)
 - Consider for biochemical or clinical relapse with isolated anemia

Future of MM therapy

- Optimizing frontline therapy
- Cost and availability
- Treatment duration
 - Particularly in first relapse where long remission seen
- More novel therapies and approaches in the pipeline
- Pharmacists involvement

Conclusions

- First-generation novel agents dramatically improved OS in MM
- Finding effective treatment at each consecutive relapse critical for prolonging OS
- Triplet therapy preferred in a patient-specific, risk-adapted approach to therapy selection at relapse
- Treatment paradigms in MM continuing to evolve
- Pharmacy team can play a huge role in optimizing outcomes

Treatment of Multiple Myeloma in First Relapse

Justin Arnall, PharmD, BCOP
Pharmacist Clinical Coordinator, Hematologic Malignancies
Levine Cancer Institute, Carolinas HealthCare System